Normalized doubly coprime factorizations for infinite-dimensional linear systems

نویسندگان

  • Ruth F. Curtain
  • Mark R. Opmeer
چکیده

We obtain explicit formulas for normalized doubly coprime factorizations of the transfer functions of the following class of linear systems: the input and output operators are vector-valued, but bounded, and the system is input and output stabilizable. Moreover, we give explicit formulas for the Bezout factors. Using a reciprocal approach we extend our results to a larger class where the input and output operators are allowed to be unbounded. This class is much larger than the class of well-posed linear systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustly stabilizing controllers for dissipative infinite-dimensional systems with collocated actuators and sensors

We derive formulas for normalized doubly coprime factorizations over H 1 , for a class of nonexponentially stabilizable systems. Using these results, we solve the problem of robust stabilization with respect to normalized coprime factor perturbations for a class of innnite-dimensional systems (A; B; B ; D), with nite-rank inputs and outputs and dissipative A; these systems are not exponentially...

متن کامل

Coprime factorization for regular linear systems

The well known state-space formulae for doubly coprime factorizations of transfer functions of stabilizable and detectable linear systems are extended to a large class of infinite-dimensional systems known as regular linear systems. Abstract-Mild sufficient conditions are given for the existence of a doubly coprime factorization of the transfer function of a regular linear system, as well as fo...

متن کامل

Riccati equations and normalized coprime factorizations for strongly stabilizable infinite-dimensional systems

The first part of the paper concerns the existence of strongly stabilizing solutions to the standard algebraic Riccati equation for a class of infinite-dimensional systems of the form Z(A,B,S V2B*,D), where A is dissipative and all the other operators are bounded. These systems are not exponentially stabilizable and so the standard theory is not applicable. The second part uses the Riccati equa...

متن کامل

An introduction to internal stabilization of infinite-dimensional linear systems

In these notes, we give a short introduction to the fractional representation approach to analysis and synthesis problems [12], [14], [17], [28], [29], [50], [71], [77], [78]. In particular, using algebraic analysis (commutative algebra, module theory, homological algebra, Banach algebras), we shall give necessary and sufficient conditions for a plant to be internally stabilizable or to admit (...

متن کامل

A Generalization of the Youla-kučera Parametrization for Mimo Stabilizable Systems

The purpose of this paper is to give new necessary and sufficient conditions for internal stabilizability and existence of left/right/doubly coprime factorizations for linear MIMO systems. In particular, we generalize the YoulaKučera parametrization of all stabilizing controllers for every internally stabilizable MIMO plant which does not necessarily admit doubly coprime factorizations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • MCSS

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2006